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1. INTRODUCTION

As the Earth’s human populationincreasesand once-fertileareasbecomeless so, human activitiesare
boundto spread into areas that oncewereconsideredbarren and unworkable, namely our planet’s arid and semi-arid
regions. Worldwide, this process has begun, As a result, these fragile areas are being put under stresses which are
leading to severe landscape damage and hence, a decrease in usefidness to humans. This process of “desertification”
is already widespread, and although many people frequently consider desertification to be a problem unique to arid
and semi-arid Africa, it is in fact occurring on all continents except Antarctica.

Desertification is actually a complex suite of phenomena which occur in arid and semi-arid environments
which can be triggered by human landuse, interannualclimate variabilityor long-termclimate change. Many
interrelated processes on sub-canopy to regional spatial scales are included, but the dominant form of desertification
in the southwestern US is the conversion of grasslands to shrublands (Sears, 1935; Buff@ton and Herbel, 1965;

f Mabbutt and Floret, 1980). The processes involved frequently occur as “runaway” phenomena which are not
reversible or remediable on human timescales for reasonable cost (Schlesinger et al., 1990). As a result, monitoring
of arid regions is critical in any attempt to short-circuit these land degradation processes.

Remote monitoring using current or anticipated satellite remote sensing is the most time- and cost-efficient
way to proceed with arid region monitoring in the fbture. Unfortunately, interpretation of remote sensing data from
arid regions is particularly diftlcult. Three factors are thought to contribute to this. First, arid and semi-arid regions
are ofien ch~acterized by large soil backgroundin many cases swampingout the spectral contributionof plants
(Huete et al., 1985; Huete and Jackson, 1988; Smith et al. 1990; Escafadel and Huete, 1991). Second, light rays
reachingsensors fi’omdesert plants areoftenpollutedby additional interactionswith desert soils (Huete, 1988;Ray
and Murray, 1996). Finally, due to evolutionary adaptations to the harsh desert environment, desert plants are
spectrally dissimilar to their humid counterparts lacking in many cases a strong red edge, exhibiting reduced leaf
absorption in the visible, and displaying strong wax absorption around 1720 nrn (Ehleringer, 1981; Ray, 1995).

Many of the early applications of remote sensing to arid and semi-arid regions suggest that present remote
sensing techniques, including most brightness and greenness indices, are susceptible to over- or underestimation of
vegetation cover simply due to variations in soil color and low vegetation cover (Huete e( al., 1985; Huete and
Jackson: 1987; Huete and Jackson, 1988; Escafadel and Huete, 1991; Pickup ef al, 1993) although Musick (1984)
found a correlation between total vegetation cover and Landsat MSS band 5 brightness. None of theses studies were
able to accurately and reliably discern shrubs from grasses in arid and semi-arid environments which is probably the
most important means by which to identi~ desert iflcation (Schlesinger et al., 1990). Later work by Franklin et al.
(1993)and Duncan et al. (1993)using SPOT wavebands and greenness and brightness indices found these indices
to be sensitive to vegetation type as well as cover, High variance in these studies, however, suggests that even in
cases where landscape components were determined to be significantly different, it may not be possible to accurately
retrieve the contribution of these components to a spatially-averaged reflectance measurements. This is presumably
due to the low spectral resolution of the SPOT wavebands and the effect of nonlinear mixing under low cover



conditions as well as the typically high spectral variability found in desert plants,

Despite the lackluster performance of remote sensing in arid regions, there are have been a few studies which
suggest that there is potential for doing accurate and reliable remote sensing in arid and semi-arid regions. Smith et
al. (1990) applied a mixing model employing laboratory and field spectra to Landsat TM data from the Owens
Valley indicating that mixture modeling can facilitate mapping and monitoring of sparse vegetat ion cover. Robens
et al. (1993) have used linear mixture analysis of AVIRIS data to map green vegetation, nonphotosynthetic
vegetation (NPV), and soils at the Jasper Ridge Biological PreseNe, CA. It is a natural next step, therefore, to
apply spectral mixture analysis to arid and semi-arid regions in the hope that this will overcome previous difficulties
in accurate and reliable landscape assessment by remote sensing in these areas. The purpose of this study is to
determine if the multiple endmember spectral mixture analysis approach will provide an accurate and reliable means
to characterize arid and semi-arid region vegetation and soils from AVIRIS data. The ultimate goal of this work is
to develop tools for remote sensing of arid regions which make the best use of current and near-fhture remote sensing
technology to monitor these environments.

2. METHOD

2.1 Study Site Description

This study was conducted at the Jomada Long Term Ecological Research (LTER) site 23 miles nonheast
of Las Cruces, NM in the Chihuahua Desert ecosystem, It is located on the Jomada del Muerto plain, which is
bounded by the San Andres Mountains on the east and by the Rio Grande Valley and the Fra Cristobal-Caballo
Mountain complex on the west. Elevation varies from 3,900 to 4,500 feet, The Jomada Plain consists of
unconsolidated Pleistocene detritus. This alluvial fill from the nearby mountains is 300 feet thick in places and the
aggravation process is still active. Coarser materials are found near foothills along the eastern part of the study area.
The topography of the study area consists of gently rolling to nearly level uplands, interspersed with swales and old
lake beds (Buffigton and Herbel, 1965),

The climate of the area is characterized by cold winters and hot summers and displays a bimodal
precipitation distribution. Winter precipitation usually occurs as low-intensity rains or occasionally as snow and
contributes to the greening of shrub species in the basin in the early spring. Summer monsoonal precipitation,
usually in the form of patchy but intense afternoon thunderstorms, is responsible for the late-summer greening of
grasses. The average annual precipitation between 1915 and 1962 in the basin was 23.1 cm, with 52% falling
between July 1 and September 30 (Paulsen and Ares, 1962). The average maximum temperature is highest in June
when it averages 36°C and lowest in January when it averages 13°C @uffigton and Herbel, 1965)

The principal grass species in the study area are burrograss (Scleropogon brev~olius), several species of
Aristida, and tobosa grass (Hilaria mutica) while major shrubs are creosote (Larrea tridentata), mesquite (Prosopis
gJandu/osa), and tarbush (Florensia cernua). Soils in the basin are quite complex but generally range from clay
loams to loamy fme sands with some areas being sandy or gravelly (Soil ConservationService, 1980).

2.2 Image Acquisition and Processing

AVHUS data were acquired over the Jomada Basin on May 27, 1997. Afler they were acquued, data were
radiometrically corrected at the AVIRIS data facility. Apparent surface reflectance was retrieved using a technique
developed by Green et al. (1993; 1996; Roberts et al. 1997a). This technique uses MODTRAN 3.5 to generate
look-up tables for path radiance and reflected radiance for water vapor at a range of values for a specified date, time,
location, meteorological visibility, and surface elevation. Modeled radiance is fitted to the 940 run atmospheric
water band of measured upwelling radiance by using a nonlinear least-squares-fitting routine on a pixel-by-pixel
basis, Apparent surface reflectance is calculated for each pixel by modeling total upwelling radiance at the sensor as
the sum of the path radiance and atmospherically-attenuated reflected surface radiance.

2.3 Multiple Endmember Spectral Mixture Analysis

Spectral mixture analysis (SMA) is based on the assumption that the reflectance spectrum derived from an
air- or spaceborne sensor can be deconvoluted into a linear mixture of the spectra of ground components, tiequently
called spectral endmembers. The best-fit weighting coefficients, which must sum to one, of each ground component
spectrum are interpreted as the relative area occupied by each component in a pixel. Multiple endmember spectral



mixture analysis (MESMA) is simply a SMA approach in which many possiblemixture models are analyzed in
order to produce the best fit (Gardner, 1997; Roberts et al., 1997b; Painter et al. 1997). In the MESMA approach,
a “spectral library” is defined which contains spectra, convolved to the 224 AVIRIS bands, of plausible ground
components. A set of mixture models with n (n 2 2) endmembers tlom the library is defined, with shade always
present as one endmember in the model. The weighting coefficients (fractions) for each model and each pixel are
determined such that the linear combination of the endmember spectra produces the lowest RMS error when
compared to the apparent surface reflectance for the pixel. Weighting coefficients are constrained to be between zero
and one, and a valid fit is restricted to a maximum preset RMS error. Models which meet these constraints are
recorded, which typically yields several possible models for each pixel, As an optional final step, the one model for
each pixel with the lowest RMS can be identified, It is these best-fit models which are discussed below.

This approachrequiresan extensivelibraryof fieldor imagespectrawhereeach plausibleground
component is representedat least once, Includingmore than one spectrum of a ground component allows for the
considerable spectral variability often found in desert vegetation, thus overcoming a difllculty identified by Franklin
et af. (1993) of doing remote sensing in arid regions.

2.4 Methods Used in This Study

In this study two-, three-,and four-endmembermodelswererun on the apparentswface reflectanceretrieval
from an AVIRIS scenewhich includes the headquarters of the Jornada LTER site (flight 970527 run 2, scene 6).

Warren and Hutchinson (1984) correctly suggested that the phonological stages of arid and semi-arid region
plants would affect their spectra! characteristics, This “spectral phenology” is a further complication of arid region
remote sensing and suggests that SMA will be most effective when field spectra taken at the same time as the
acquisition of remote sensing data are used in mixture models. Field spectra collected in the Jomada LTER site
during May 24-25, 1997 were incorporated into the spectral library in this study in order to make as direct an
identification of landscape components as possible. Field spectra were collected from 350 nm to 2500 run using an
ASD Full Range portable spectroradiometer (Analytical Spectral Devices, Inc., Boulder, CO) on loan fkom the Jet
Propulsion Laboratory, With a 100% reflective Spectralon panel, spectra can be displayed and recorded in real-time
as reflectance.

A total of 36 field spectra were chosen to be included in the spectral library for this study. This includes
spectraof nine soils, nine grasses (three species), seven creosote, four tarbush, and seven mesquite, Representative
spectra are shown in Figure 1, Soil spectra were given the names of the sites at which they were collected. Four
soil spectra that appeared to model soils in the basin are: M-rub, a dark red loamy fine sand soil of aeolian origin
from a mesquite duneland, P-tube, a clay loam from a gypsiferous playa, and T-eust and G-barn, clay loam to fme
sandy loam soils found on basin floors and toe slopes of fans (Soil Conservation Service, 1980). Grasses at this
time of the year were by and large senesced. Spectra used in three- and four-endmember models were chosen to
minimize computation time and to maximize spectral variability using the method outlined by Gardner (1997). In
this library analysis, each spectrum in the spectral library is modeled by every other spectrum in the library coupled
with shade and constrained by the constraints that will be used in the final analysis. This allows spectra to be
compared to one another, and redundant or unique spectra to be identified. Spectra were chosen which 1) modeled
other spectra of the same type, 2) were not modeled by other spectra of the same type, and 3) were not confused with
spectra of other types,

For the two-endmembermodels, the entire 36-member spectral library was used in MESMA modeling.
For the three-endmember models, all soil + grass + shade, soil + shrub + shade, grass+ shrub + shade
combinations of a reduced libra~ (spectra of seven shrubs, six grasses, and six soils) were used, resulting in a total
of 144 different models. Finally, for the four-endmember models, four soil spectra, six grass spectra, and six shrub
spectra were used to define a total of 146 soil + grass + shrub + shade models. Each of the models was run twice:
once with a maximum RMS threshold of 2.5°A and once with a maximum RMS threshold of 2.0°/0.
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Figure 1. Representativespectraused in MESMAof AVIRIS image

DISCUSSION

3.1 Two-Endmember Models

Two endrnembersmodeled only 24% of the AVIRIS scenewithin the 2.5?40RMS constraints. The only
1 endrnembersthat successfidly modeledthe imagewere soils, mainly T-ear? and P-tuba This implies primarily that

the fret-order signal in the image is soil, which is to be expected in an aridenvironment and indeed confms other
authors’ results that soil is the major spectral contributor to remote sensing data in arid and semi-arid regions
(Huete et al., 1985; Huete and Jackson, 1988; Smith et al., 1990; Escafadel and Huete, 1991). This result also
suggests that since the soil signal is so strong, it might be very difficult to get much information about vegetation
in the scene.

Although a qwuter of the scene was modeled using just soil and shade, examinations on the ground
suggest there are very few areas in this region that are pure soil. Virtually all of the pixels probably contain some
vegetation, Clearly, two-endmember models are inadequate for use in this environment where soil is the major, but
not only, contributor to pixel-wide spectral averages. Reducing the maximum RMS constrain to 2.OVOefllciently
eliminated the two-endmember models from consideration, with less than 2°Aof the entire scene meeting the
constraints, This is further evidence that two-endmember models can not accurately be used to model reflectance in
this scene.

3.2 Three-Endmember Models

Figure 2 is a map of fencelines within the AVIRIS scene takenfromgrounddata acquiredhorn Barbara
Nolen at the Jornada LTER office, New Mexico State University. This map is at the same scale as all Figure 3
images and is to be used as a geographical comparison. Features of note in this image are the square exclosure on
the westernside of the map, the southwest-northeasttrendingfencelinesoutheastof the exclosure,and the Jomada
LTER Headquartersnorth of the exclosure.

The three-endmembermodels were divided into 3 categories: soil + shrub+ shade, soil + grass+ shade,
and shrub + grass + shade, With an RMS constraint of 2.5°/0,90°/0of the image was modeled, whereas a 2.0°/0
RMS constraint reduced this fraction to 30V0. The shrub+ grass+ shade category modeled vimally none of the
image, a testament to the strength of the soil signal and its importance in any SMA models for this environment.
Figure 3b shows pixels that were best modeled by soil + shrub+ shade as gray, and those best modeled by soil +



Figure2, FencelincsinAVIRISsceneused in this study.
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c) 4 endmcmbcr model soils d) 4 endmcmber model vegetation

Fjgurc3. Resulls of MESMA for 3- and 4-endmember models with maximum RMS of2,5%



grass + shade as black, Most of the scene was modeledby soil + shrub+ shade, giving the impression that shrubs
dominate the environment. The most successful shrub spectra in the three-endmember models were of creosote and
tarbush. This result is certainly reasonable given preliminary examination of the environment which suggests that
these shrubs are dominant in this area. A significant part of the image was not modeled by any three-endmember
model at the chosen RMS constraints. This suggests that a prominent and unique endmember is missing from the
spectral library, which corresponds to some obvious bright features in apparent surface reflectance found in the central
part of the scene (not shown).

The areas where the grass models are chosen imply that the three-endmember approach is able to capture
some of the true vegetative variability in the scene. Most obviously, the square exclosure in Figure 3b and the
“arm” adjacent to it are clearly visible in the image as a sea of grass models amidst an ocean of shrub models, This
indicates a clear spectral change across fencelines which may by due to a real change in vegetation. Preliminary
ground observations suggest that these areas are indeed dominated by grass,

Figure 3a shows the four soils which dominate the three-endmember results, P-rabo is the most
prominent soil, spanning the entire image, and accounting for most of the soil in the lefi side of the image. M-rub
shows several contiguous features, especially a large portion of the top of the image and a long linear feature across
the middle of the image, It also appears in the exclosure and the “arm”. G-basn is spread across the image, and has
a spurious look to it, since it is quite fragmented and frequently bordersunmodeled portions of the image. T-eust
shows up in the same regions as M-rub, but with much less flequency.

The frequencyof P-tabo in successful three-endmember models is not geologically sensible: P-tabo is a
gypsiferous playa soil but the areas best modeled by it are not playas. On the other hand, areas best modeled by M-
rab are sensible: M-rub is an interdune soil and areas best modeled by it are aligned with the dominant southwest-
northeast trending wind direction in the basin and also correspond to areas mapped as highly susceptible to wind
erosion (Soil Conservation Service, 1980). Few pixels are best modeled by T-easf, which was collected just off the
southwestern edge of the scene. This might be interpreted as an erroneous result, However, the Soil Conservation
Service soil map (1980) of the basin does place a boundary between the southwest comer of this image and the T-
eust site in both soil type and texture, suggesting that despite its proximity, the T-east soil type is not present in
the scene.

One geographical feature in particular stands out in the image to suggest that three-endmember models may
not be optimal everywhere in an arid environment: the change of soil model across the fenceline in Figure 3a (cf.
Figure 2 for fencelines). Although there are means by which a soil may change across a fenceline, this is unlikely in
this case. More likely is a change in vegetation, from grass-dominated to shrub-dominated, across the fenceline due
to differential livestock grazing. Since only three endmembers are being used for these models, however, this change
in vegetation can’t be modeled explicitly, and the difference appears as a change in the soil endmember. This
fenceline soil feature can be expected to disappear in the four-endmember models.

Despite the problems with the three-endmember models mentioned above, these results suggest that
MESMA may have some success in modeling apparent surface reflectance in arid and semi-arid regions. The fact
that grasses are modeled in areas known to be grass dominated-- the exclosure md the “arm”-- as well as the spatial
contiguity of the modeled endmembers suggests that MESMA is responding to real spectral variation and may be
capable of accurately and reliably modeling soils and vegetation in arid and semi-arid regions, Nonetheless, it is
clear that four-endmember models maybe required under certain circumstances to deconvolute soils and plant
signatures.

3.3 Four-Endmember ModeIs

‘ In this arid region of New Mexico, there are two basic vegetation types: shrubs and grasses, Since the two-
and three-endmember modes have shown that soil is the dominant signal in the image, a soil endmember must be
included in any mixture model in this region, Thus, to capture the two vegetation types, four-endmembers will
often be needed-- soil, shrub, grass, and shade. Since four soils dominated the three-endmember models, these soil
spectra were combined with six grass spectra and six shrub spectra to define 146 soil + grass + shrub + shade four-
endmember models, With an RMS constraint of2.5% the four-endmember models fitted 80°Aof the image while at
2.0?40RMS, 34V0of the image was modeled. A significant part of the image was not modeled by any four-
endmember model at the chosen RMS constraints, These unmodeied areas correspond to the same areas in the
three-endmernber models that were unmodeled, further indicating that a prominent and unique endmember is



missing from the spectral libra~. The fact that more pixels were modeled at a maximum RMS of 2.5°A in the three.
endmember models instead of the four-endmember models is likely due to the significant reduction in the size of the
spectral library which was needed to make MESMA computation time reasonable.

Displaying pixels with a greater fraction of grass than shrubs and vice-versa in Figure 3d gives the
impression that there is much more grass in the region than implied by the three-endmember models, Preliminary
ground observations indicate that this is probably the case. Again, forcing only one vegetation endmember on an
environment with two distinct vegetation types may be causing erroneous results, The exclosure and the “arm” are
still apparent, although the contrast at the fencelines isn’t as great as it was in the three-endmember vegetation
image (Figure 3b), As hypothesized, the questionable change in soil type across the fenceline noted in Figure 3a
has disappeared in Figure 3c, and Figure 3d does suggest that a change in vegetation across this fenceline may be
responsible for the apparent soil change noted in the three-endmember results.

Unfo~nately, P-tabo shows up in the four-endmember results just as it did in the three-endrnember
results. Once again, this is probably a spurious result, The greater spatial contiguity of the areas mapped as P-tabo
may suggest, nonetheless, that the four-endmember model really is more successful at disentangling soil from
vegetation contributions to apparent surface reflectance. Loss of&f-rub as the best fit soil in the southeastern
portion of the image may also be erroneous,

4. CONCLUSIONS

It was the purpose of this study to determineif the MESMAapproachcan provide an accurateand reliable
means to characterizearid and semi-arid region vegetation and soils from AVIRIS data. The results presented here
indicate that MESMA can successfully capture some of the most important landscape features, such as shrub-to-grass
ratios, that are relevant for desertificationmonitoring. Two-endmembermodels are inadequate for mixture modeling
of arid and semi-arid environments. Although MESMA can be forced to model AVIIUS data from these areas using
only two-endrnembers, these results are not convincing. The fact that two endmember models fail to characterize a
significant portion of the image indicates the MESMA is responding correctly to landscape structure. Application
of three-endmember models indicate that these models might introduce some errors into the results due to the fact
that there is an inadequate amount of variation in the vegetation endmembers to capture real variation on the ground.
Four-endmember models provide enough flexibility to account for some of the complexity of this arid environmentb
but may not be applicable everywhere, It is clear tiom our results that a combination of three- and four-endrnember
models will be required to apply MESMA accurately and reliably to arid and semi-arid regions. Given the fact that
the same areas were modeled with both three- and four-endmembers, the criterion for this choice in arid regions can
not be minimum RMS as suggested by Painter et al. (1997) for other environments, A new method must be found,
and might take advantageof the spectralphenologyencounteredin arid and semi-aridregions,

5. FUTURE RESEARCH

Although the results of this study are promising, there are some sources of error which must be addressed
before this research can proceed further, First and most importantly, the reflectance inversion used in this work has
suffered due to the fact that modeled reflectance was not adjusted to a known target reflectance of any one pixel in the
scene. This procedure allows refinement of all apparent surface reflectance spectra in the scene and may greatly
improve mixture modeling. There are few targets in this study area which are homogeneous enough to use for this
refinement, but one must be found in order to proceed with confidence. Second, these results must be field-checked.
We suggest the use of a stratified random sampling scheme to do this. In addition, some obvious gaps in the
ability to model the image arose from some conspicuous missing endmembers. In the future, improved models
might result from a larger and more complete spectral library for this region.

Finally, an improved method must be found for choosing between three- and four-endmemlxr models in
arid and semi-arid environments. It is proposed that this method might take advantage of the large spectral changes
in plants during their different phonological stages. Since grasses will show much more variation in greening and
senescence than shrubs and also green at different times than shtubs, seasonal differences may give additional
information to differentiate between these vegetation types. The ability to determine whether a three-endmember
model or a four-endmember model is more appropriate for a given pixel is a crucial step that must included in the
definition of a robust methodology for modeling arid environments using MESMA.
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