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1.0  INTRODUCTION 

Soil albedo is influenced by many physical and chemical constituents, with moisture being the most influential 
on the spectra general shape and albedo (Stoner and Baumgardner, 1981).  Without moisture, the intrinsic or matrix 
reflectance of dissimilar soils varies widely due to differences in surface roughness, particle and aggregate sizes, 
mineral types, including salts, and organic matter contents.  The influence of moisture on soil reflectance can be 
isolated by comparing similar soils in a study of the effects that small differences in moisture content have on 
reflectance.  However, without prior knowledge of the soil physical and chemical constituents within every pixel, it 
is nearly impossible to accurately attribute the reflectance variability in an image to moisture or to differences in the 
physical and chemical constituents in the soil.  The effect of moisture on the spectra must be eliminated to use 
hyperspectral imagery for determining minerals and organic matter abundances of bare agricultural soils.  Accurate 
soil mineral and organic matter abundance maps from air- and space-borne imagery can improve GIS models for 
precision farming prescription, and managing irrigation and salinity.  Better models of soil moisture and reflectance 
will also improve the selection of soil endmembers for spectral mixture analysis.  

Previous investigations have used laboratory spectra that are continuous throughout the full range to estimate 
moisture based on water absorption bands.  Unfortunately, light is absorbed by water in the atmosphere, preventing 
the use of many of these bands in image spectra. In laboratory studies, it is common to relate soil moisture to 
specific water absorption overtones at 1.1, 1.4, 1.9 µm (Liu et al., 2002; Lobell and Asner, 2002).  For image spectra 
it is necessary to utilize the general shapes of the spectra, properly calibrated for the atmosphere, excluding the 
individual absorptions of the water overtones. 

Consistent with previous investigators, we noted the loss of reflectance with increasing water content (Bowers 
and Hanks, 1965); our spectra showed the same decline of albedo in Figure 1. The shape of the continuum in the 
VIR and SWIR responds, in a large part, to the water fundamental absorption in the 2.8 µm region (Bishop, 1988).  
The fundamental absorption of water affects the soil spectrum by spreading the absorption with increasing water 
bulk content (Bishop et al., 1994).  We observed that as the overall reflectance declined, the position of the 
maximum reflectance also shifted to shorter wavelengths.  

Currently available field and airborne instruments with a SWIR range to 2500 nm are just short of this 
fundamental water absorption peak.  Therefore, it is necessary to model the SWIR continuum to extrapolate beyond 

the wavelength range of the instruments.  
Fitting a mathematical curve and linear 
functions to the extrapolated continuum 
provides numerical measures of the 
absorption depth and area changes in the 
fundamental water absorption.  The 
shifting of the maximum reflectance to 
shorter wavelengths lengthens the tail of 
the curve as the absorption deepens.  This 
shape response is characteristic of the 
changes seen in an inverted Gaussian 
function.  Mineral and vegetation 
absorptions have been commonly 
measured through parameterizing the 
absorption bands with Gaussian functions 
(Miller et al., 1990; Mustard, 1992; 
Sunshine and Pieters, 1993).   

To demonstrate that water content 
can be estimated through its relationship 

Figure 1.  Distinctly different soils at similar moistures. 



 

to the fundamental absorption spread, 
laboratory soil spectra from a range 
Mediterranean soils and moisture contents 
were fitted to inverted Gaussian curves.  The 
returned Gaussian parameters were 
regressed against the moisture contents of 
these soil samples.  Several parameters from 
the Gaussian model were tested and demon-
strated different levels of accuracy from 
0.017 to 0.025 RMSE for estimating water 
content (g/g) (Whiting et al., in press). 

Specific to the interest of this AVIRIS 
conference, determining whether AVIRIS 
has significant resolution for this modeling 
process is necessary before the process is 
applied to AVIRIS image.  Eliminating the 
effect of soil water is essential to obtain 
accurate estimates of mineral and organic 
matter abundances. The first step in 
developing the correction for moisture 

effects is to accurately estimate moisture content.  A large subset of these laboratory spectra were used to develop 
and validate the soil moisture Gaussian model (SMGM), degraded from 1-nm to 10-nm band widths, to simulate 
AVIRIS reflectance spectra.  The regression of water content on these model parameters demonstrated even a slight 
improvement in estimating water content. 
 
1.1  Effect of Moisture on Mineral Abundance Estimates 

The depths of absorption near 2.2 µm increases corresponding to the increasing clay mineral contents when  
shown in the continuum removed spectra  (Figure 2),  obtained from similar soils in our study area.  The shape of 
other absorption features has been associated with abundance, as in the derivatives of the 2.3 µm region in 
laboratory spectra data for carbonate abundance (Ben-Dor and Banin, 1990).  The problem is that this contrast 
observed in the continuum is inconsistent with changes of water content, whether measured by the depth or shape. 

As determined early on, the over-all reflectance of soil declines with increasing moisture (Figure 1).  In contrast 
to increasing moisture absorption at 1.4 and 1.9 µm, mineral absorptions diminish, non-linearly, with increasing 
moistures as shown in continuum removed spectral from our study soils (Figure 3).  Determining the correction for 

the spectra, and the mineral and organic 
matter absorptions, is part of our on-
going research program. 
 
1.2  Physical and Mathematical 
Moisture Model 

The decline in soil reflectance with 
increasing moisture follows a 
characteristic pattern, even among 
dissimilar soils.  In Figure 1, the brighter 
soil from calcareous terraces in Spain 
and the darker soil from southern San 
Joaquin Valley, California basin rims, at 
the same moistures, appear to have very 
different continuum patterns.  However, 
after the differences in intrinsic or 
matrix reflectance is eliminated by 
normalizing to the spectrum’s maximum 
reflectance (Figure 4), the spectra from 
the same moistures show similar 
patterns, denoted by curved lines.  Also, 

Figure 3.  Absorption depth declines disproportionately to the amount 
of increasing water content, and decline in soil reflectance. 

Figure 2.  The absorption depth at 2200-nm is related to the clay 
contents. 



 

the maximum reflectance in the SWIR 
declines with increasing moisture content 
and the wavelength position of maximum 
shifts to shorter wavelengths, following 
the spread of the fundamental water 
absorption. 

From the Beer-Lambert Law, we 
know that absorptions are log based, that 
is, absorbance is the negative log of 
reflectance.  The difference from incident 
and reflectance light on soil (considered 
infinitely thick optically) is the portion 
absorbed.  This apparent absorbance 
(Kortum, 1969) is equal to the product of 
a mineral’s absorption coefficient and 
optical depth (Clark and Roush, 1984). 

 
 
 
 

 I = Io exp(-ad) or -ad = lnI – lnIo  (1) 

where I is transmitted energy, Io, incident energy, a, absorption coefficient, and, d is the optical path length.  While 
Hapke (1993) provides a number of techniques for converting reflectance to absorbance to reduce the effects of 
logarithmic compression,  Yen et al. (1998) found the natural log the least unsatisfactory for linearizing reflectance 
data from laboratory measurements and transforming to apparent absorbance, defined by Kortum (1969) as the –
ln(r).  For the remainder of this discussion, the absorbed energy is described and modeled using the natural log of 
reflectance. 

A common method of reduce complex shapes of absorptions to a few parameters is fitting the Gaussian 
Function (Miller et al., 1990; Sunshine and Pieters, 1993).  The model has the advantages of parameterizing the 
absorption into three values:  a) function center, b) its amplitude, and c) the distance to the inflection point.  A fourth 
parameter can be derived, the area under the curve.  After a series of trial and error, the position of the maximum 
reflectance was left unconstrained, which allowed the functional tail to shift with the spread of the fundamental 
water absorption.  The spectra are normalized by dividing the reflectance at each band by this maximum reflectance 
(R0).  The center of function was constrained to 2.8µm (µ), the other parameters were determined through a least-
squares fitting of the reflectance at each wavelength (λi), for the depth (Rd) or the amplitude of the Gaussian 
Function, and the distance to the inflection point (σ) in Equation (1). 
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The area between the extrapolated Gaussian curve and its baseline was determined through integrating equation (1) 
from the maximum reflectance wavelength to the center of Gaussian curve, shown in Equation (2). 

The continuum was found by defining the upper general shape of the spectrum through a convex hull algorithm.  
The hull boundary points, at wavelengths greater than the maximum reflectance, were used in an iterative least 
squares fitting algorithm to solve for the best Gaussian function for SWIR spectrum, returning both the Gaussian 
parameters and the minimum least squares fit errors (Figure 5).  The root mean squared error (RMSE) of the fit was 
calculated using the least squares and the number of hull boundary points for each spectrum.  IDL (Research 
Systems, Inc., Boulder, CO.) was used to program the functional fits and the error determinations.  The Gaussian 
parameters and area were regressed against the gravimetric water contents to determine the moisture curve 
coefficients.  The linear and non-linear regressions and statistical evaluations were conducted using S-Plus 2000 
(Insightful Corporation, Seattle, Washington). 
 
 
 

Figure 4.  After spectra are normalized by maximum reflectance for 
each spectrum, the trend due to moisture becomes more apparent. 

2-3%
12%
20%
30%
42%

Water Content by Weight
2-3%
12%
20%
30%
42%

Water Content by Weight



 

2.0  STUDY METHOD 

To evaluate the effectiveness of 
the Gaussian function to describe the 
response of the soil reflectance to 
moisture, the function was fitted to 
spectra from a variety of soils and a 
sequence moisture contents.  The 
resulting Gaussian parameters were 
compared to a range of measured 
moistures, from oven dry to saturation.  
 
2.1  Study Sites and Soil Sampling 

Soils were from two distinctly 
different locations in Spain and 
California.  The soils from Castilla-La 
Mancha, Spain, were collected from 
the calcareous uplifted Miocene 
calcareous and fill-cut terraces just 
south of the town of Tomelloso.  These 
samples were stratified by their five 

landform surfaces, a) uplifted pedogenic carbonate terrace, b) internal drains on the upper terraces, c) and d) two 
lower level cut and fill alluvial terraces, and e) flood plain.  In general, they are described as the upper fans or 
piedmont of “calizas y margas” (limestone and marls) mixed with “conglomerado arcilloso, coarzoso con gravas” 
(conglomerates of clays and gravels), (Martin et al., 1994).  Sanchez et al. (1996) described the general types using 
the FAO soil classification system.  Within the sampled area, the older surfaces of Petric Calcisols, limestone and 
marl with laminar calcareous crust, formed on alluvial fans, “developed from limestone and detritic materials of the 
upper Pliocene.” In the younger alluvium and river wash, the soils are described as Haplic Calcisols, as calcisols 
lacking an argic B horizon and petrocalic horizon, “developed on detritic materials of alluvial bottom valleys.”  This 
map is general and designed for regional studies and planning. 

The soils from the second region were formed on the basin rim of the Tulare Lake playa in the southern San 
Joaquin Valley, near the city of Lemoore, Kings County, California, United States.  These samples were stratified by 
sodicity using (electro-conductivity, EC) and visible vegetation vigor or necrosis. The USDA Natural Resources 
Conservation Service described the soils as fine-loamy, mixed (calcareous), thermic Typic Torriorthents, and fine, 
montmorillonitic, thermic Typic Natrargrids using the USDA classification system (USDA, 1978).  Their laboratory 
analysis described the mixed mineralogy of illite and montmorillonite clays.   

Within the stratifications of both locations, one typical site was selected for modeling, where three samples 
were taken by transecting from west to east, at 10m apart.  At a different location, more than a kilometer from the 
modeling site, an additional typical site was selected to collect one sample for validation. 

These two regions provided soils with varying dry and moist colors, wide range of clay, and calcium carbonate 
and sodium chloride contents.  Organic matter contents were similar, less than 2 % for both regions.  Soils from the 
calcareous terraces in Tomelloso are bright due to adsorbed and free amorphous calcium carbonate.  Pedogenic 
carbonate formations, from deep in the soil profile, have been exposed by erosion and surfaced by farm tillage 
practices.  Carbonate aggregates, ranging in size from larger than gravels to finer than slit, are dispersed throughout 
the profiles.  Younger cut-fill terraces and floodplains contained less carbonate and pedogenic gravels.  

Soils in Lemoore differed in fine sand, silt and clay contents and in sodium chloride contents.  The sodium 
contents promoted smooth surfaces through slaking of surface micropeds, and possibly influencing changes in the 
spectra (Courault et al., 1993).  The Sodium Absorption Ratio (SAR) is the amount of sodium to the squared sum of 
calcium plus magnesium contents (Tanji, 1990) and ranged from 2.5 to 6.5 for Lemoore and 0.05 to 0.12 for 
Tomelloso.  Though the mean for the basin high sodicity group is less than the minimum ratio of 15:1 for the sodic 
classification (SSSA, 1997), it is more than double the mean ratio of the low sodicity group, and one or two orders 
of magnitude greater than the Tomelloso region. 
 

Figure 5. The Gaussian function fitting to a dry normalized soil 
spectrum. 



 

2.2  Collecting the Soil Spectra 

In the laboratory, using a Cary 5E spectrophotometer (Varian Incorporated, San Jose, California) fitted with an 
external integrating sphere (Labsphere, Inc, North Sutton, New Hampshire) each moisture level of each samples was 
measured three times.  The sample holders were mounted in the light-tight port at the base of the sphere.  The 
instrument projected a collimated light onto the soil surface at nadir, with a constant reference double beam.  The 
maximum relative reflectance was calculated from measurements of a white Spectralon panel (Labsphere, Inc, North 
Sutton, New Hampshire).  The light from the spectrophotometer struck the targets in a fixed rectangle approximately 
1 cm by 2.8 cm within the 3.5 cm diameter holder.  To avoid any bias due to surface geometry, three measurements 
were made of the soil target.  The holders were rotated approximately 60o before the consecutive spectral 
measurements. 

After lightly hand grinding with a mortar and pestle, two replicate samples were packed into small clear plastic 
petri dish sample holders.  Spectra were collected at the air dry, then oven dry states.  The collection of spectra 
continued after each of eleven additions of water, at approximately 5% water content intervals.  At the end, the soils 
were returned to the desiccators to air dry, then oven dried and spectra were collected with each moisture change.  
Of the possible 3600 combinations of soil replicates and moisture contents, 45 samples, by 2 soil replicates, and 3 
spectral measurements with each of 15 moistures, there were 3,462 acceptable measurements, with 2,619 used for 
modeling and 843 for validation.  Some samples had fewer measurements because they saturated earlier than the 
others and did not need all 11 water additions.  Additional spectral were discarded when the second oven dry weight 
for the soil replicate did not return to within 0.1% of the first oven dry weight.  Either the initial weight was in error 
or sample material was lost with handling.  
 
3.0  RESULTS AND DISCUSSION 

3.1  Fitting the Moisture Model to Laboratory Spectra 

The Gaussian parameters were determined for each spectra from the sequence of moistures and soil replicated 
samples, and then evaluated against the measured water contents.  Of the spectra, the number of hull boundary 
points for each spectrum ranged from 20 to 100, with the greater numbers being from the drier replicates due to 
greater curvature in the spectra.  The maximum reflectance moved from between 1650 and1800 nm for the dry soils 
to near 1300 nm for moist soils.  There was not a gradation of maximum reflectance positions due to the deep water 
absorption at 1400 nm.  The fitted Gaussian returned parameters of depth, distance to inflection and area under the 
shortward portion of the curve.   

For all soils and all moistures, the area of the curve was the best predictor of moisture content. While the 
functional depth and distance to the inflection point predicted the water content less accurately, analyzed together as 
the integration of the area, the performance was far superior.  The prediction accuracy for all parameters decreased 
with increased moisture, and significantly worsened above 0.30 water content.  The increase in moisture begins to 
saturate the soil samples, filling the small pores then the larger pores (Jury et al., 1991).  The reflectance from the 
water becomes dominate, instead of the soil and water (Liu et al., 2002).  

Since the area was far superior in predicting the water content, further analysis was conducted with this 
parameter.  From the increasing variability exhibited in the predictions by the functional parameters, the linear 
model developed from the area was restricted to air dry to near field capacity, 0.02 to 0.32 gm/gm water content.  
Field capacity is defined as the water content that free draining soil holds against gravity after 24 hours (Jury et al., 
1991).  Most soils reach field capacity between 0.25 and 0.40 gm/gm water content (Brady and Weil, 1996).  Our 
value of 0.32 gm/gm was derived from the sudden increase in variability for values above 0.32.  The “restricted” 
model also eliminated spectra where the error in the Gaussian fit exceeded 0.0125 RMSE.  The same variability was 
apparent in the validation set.  The restricted validation set had no spectra fit exceeding the 0.0125 RMSE, within 
the moisture contents below 0.32.   

The restricted soil moisture Gaussian model (SMGM) for these spectra was highly correlated to water content, 
though the regression coefficients were slightly different for the two locations. The result of the model for all soils 
and moistures was coefficient of correlation (r2) = 0.89, and for the restricted model set was r2 = 0.92, and with 
stratifications within the study sites the r2 improved in most to 0.95. The model for Lemoore has a slightly higher r2 
than that of Tomelloso.   

The Lemoore soils are much more consistent between samples in texture and aggregate size.  The Tomelloso 
varied widely between the geomorphic surfaces.  The correlation coefficients for the Tomelloso restricted model and 
validation sets improved substantially by stratifying by the geomorphic surface.  When the model was applied to the 



 

validation set for only Lemoore the results were very similar to the modeling set, with r2 of 0.92 and RMS of 2.85 in 
water content percentage.  The fit lines for the restricted models for the two regions are shown in Figure 6. 

 
3.2  Fitting the Model to Simulated AVIRIS Spectra 

More relevant to this conference, we tested the effectiveness of this model at the 10-nm full width half 
maximum (FWHM) channels of AVIRIS data.  The model and validation samples were selected to capture both 
saline-sodic and healthy vegetation responses determined from a pseudo-color infrared composite of a 1998 ER-2 
AVIRIS image of the Sheely Farms, near Lemoore, California. 

Resampling lab spectra has the advantage of studying the effects of spectral resolution without increasing the 
errors associated with incorrectly calibrated image data.  The same lab spectrophotometer data between 400 nm and 
2390 nm was interpolated to AVIRIS image band centers, which degraded the spectra from 1,990 1-nm bands to 189 
nominal 10-nm bands.  The resampling improved the smoothness of the spectra, though it reduced the range in the 
number hull boundary points from 20 to 100 in the full laboratory spectral to 5 to 20 in the simulated AVIRIS data.  
The fit to the Gaussian improved substantially with no error rate greater than 0.0125 RMS.  With high moisture 
contents, the number of hull points for some spectra fell below 5, and the fitting with the Gaussian function would 

not converge.  The number of hull points must be greater 
than the number of parameters in the function. 

The variability in the AVIRIS Gaussian parameters 
values was similar to the laboratory spectral data (Figure 7).  
While the amplitude of the function, again, was correlated to 
the water content, the area of Gaussian was a better predictor 
of the water content.  In Table 1, the laboratory restricted 
model and the AVIRIS simulation model are basically the 
same, though there is a slight difference in the off-set 
coefficient, -1.68 to -11.81, and the same 0.19 coefficient for 
the area.  The r2 is virtually the same for both, 0.92 to 0.93, 
respectively. 

When the model is applied to the validation spectral set, 
the accuracy of the model was similar to the model set for 
all moisture contents and is within RMS of 4.4 %-water 

Figure 6. The linear fit of water content on the Gaussian area for Lemoore and Tomelloso soils. 

Table1.  Comparison of laboratory and simulated 
AVIRIS spectra fitting and water content model 
prediction. 



 

content.  Again, the model is much improved within a restriction of the range of the water contents from 0.02 to 0.32 
with the RMS falling to 2.84 %-water content.  
 
4.0  CONCLUSIONS 

The general shape of soil spectra SWIR region is related to water’s fundamental absorption slightly beyond the 
spectral range of our field and imagery instruments.  The fundamental absorption can be modeled with a Gaussian 
function on the hull boundary points of the continuum by extrapolating the SWIR continuum to the region of 
fundamental water absorption.  The function and change of the SWIR general shape are sufficiently sensitive to the 
water content changes.  Within the sandy loam to clay loam textures, in widely diverse Mediterranean soils from 
California and La Mancha, Spain, and common moisture ranges, the area under the curve has a linear relationship 
that can accurately estimate the surface moisture content within 3 %-water content (RMSE). 

Specific to the application of this model for the retrieval of soil water content to imaging spectrometer data, the 
10-nm FWHM of AVIRIS data appears to have sufficient detail to return the same accuracies.  Smoothing, induced 
by the interpolation of resampling, did improve the fit accuracy slightly.  At the higher moisture contents, some 
spectra had a reduced the number of hull boundary points, less than the needed number of the parameters, and fail to 
converge.  Investigations are continuing on using the model of eliminate the effects of soil moisture to improve the 
estimates of other soil constituents in the soil spectra.  
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Figure 7.  Similar linear fit of water content for the AVIRIS spectra simulation. 
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